Chem. Ber. 116, 1873-1879 (1983)

Niederkoordinierte Phosphor-Verbindungen, 18¹⁾

Synthese und Molekülstruktur von zwei 1,3-Diphosphapropenen

Rolf Appel*, Falk Knoch, Benno Laubach und Rolf Sievers

Anorganisch-Chemisches Institut der Universität Bonn, Gerhard-Domagk-Str. 1, D-5300 Bonn 1

Eingegangen am 14. September 1982

Die aus Phenylbis(trimethylsilyl)phosphan (1) und den Isocyaniddichloriden 2 erhaltenen 1,3-Diphosphapropene 3 zeigen im ³¹P-NMR-Spektrum Verschiebungsdifferenzen für das Phosphoratom der (PC)-Doppelbindung von bis zu 120 ppm. Nach Röntgenbeugungsuntersuchungen an den Verbindungen 3a, b kann die große Verschiebungsdifferenz nicht auf unterschiedliche Konfiguration an der (PC)-Doppelbindung (E/Z-Isomere) zurückgeführt werden; sie hängt vielmehr von der Einstellung des einsamen Elektronenpaars am Stickstoff zum π -System der (PC)-Doppelbindung ab.

Low Coordinated Phosphorus Compounds, 181) Synthesis and X-ray Structures of two 1,3-Diphosphapropenes

1,3-Diphosphapropenes 3, obtained by the reaction of phenylbis(trimethylsilyl)phosphane (1) with the isocyanide dichlorides 2, show shift differences for the phosphorus atom of the (PC)double bond up to 120 ppm in the ³¹P NMR spectra. According to X-ray structure determinations of the compounds 3a, b, the great shift difference cannot be ascribed to the different configurations of the (PC)-double bond (E/Z-isomers); but it depends on the position of the lonepair electrons of the nitrogen atom towards the π -system of the (PC)-double bond.

Wie bereits berichtet reagieren aromatische Isocyaniddichloride 2 mit Phenylbis(trimethylsilyl)phosphan (1) unter geeigneten Reaktionsbedingungen im Verhältnis 1:2 zu den entsprechenden 1,3-Diphosphapropenen $3^{2,3}$.

Die so dargestellten Diphosphapropene 3 unterscheiden sich nur geringfügig durch die Substitution des am Stickstoff gebundenen Phenylringes. Dennoch differieren die ³¹P-NMR-Verschiebungen des Doppelbindungsphosphors um bis zu 120 ppm (3c: $\delta =$ 136; 3d: $\delta = 256$). Auch bei den strukturverwandten Phosphaamidinen wurden ähn-

© Verlag Chemie GmbH, D-6940 Weinheim, 1983

lich große Verschiebungsdifferenzen beobachtet⁴⁾. Da man nach Berechnungen am unsubstituierten Phosphaethen von einer hohen Rotationsbarriere um die (PC)-Doppelbindung ausgehen kann⁵⁾, lag es nahe, die stark unterschiedlichen ³¹P-NMR-Signale den zu erwartenden E/Z-Isomeren zuzuordnen^{4,6)}.

Neue Röntgenstrukturuntersuchungen an verschiedenen Phosphaalkenen aus unserem Arbeitskreis ließen nun Zweifel aufkommen, ob sich die beobachteten großen Verschiebungsunterschiede tatsächlich auf das Vorliegen von E/Z-Isomeren zurückführen lassen. Die Röntgenbefunde deuten vielmehr darauf hin, daß die großen Verschiebungsdifferenzen in einer Wechselwirkung der (PC)-Doppelbindung mit dem mesomeriefähigen Rest (hier das einsame Elektronenpaar am Stickstoff) begründet sind⁷.

Diese Hypothese war insofern noch unsicher, als sie an Vertretern verschiedener Stoffklassen der Phosphaalkene abgeleitet wurde. Es war daher unser Ziel, zwei Vertreter der zumeist ölig anfallenden 1,3-Diphosphapropene 3 mit stark abweichenden ³¹P- δ -Werten zur Kristallisation zu bringen und röntgenographisch zu vermessen.

Dies ist mit den Verbindungen **3a** ($\delta = 140$) und **3b** ($\delta = 234$) gelungen. Obwohl sie sich nur geringfügig an der Peripherie des Moleküls durch 2-Cl- bzw. 4-CF₃-Substitution des am Stickstoff gebundenen Phenylrestes unterscheiden, beträgt die ³¹P-Verschiebungsdifferenz 94 ppm. Ein ³¹P-NMR-Festkörperspektrum von **3a** stimmte mit dessen Lösungsspektrum überein, so daß die Übertragung der im festen Zustand gefundenen Konfiguration auf die gelösten Moleküle zulässig ist⁸.

Die Röntgenbeugungsuntersuchungen führten zu dem Ergebnis, daß beide Moleküle 3a und 3b E-konfiguriert sind.

Abb. 1a. Molekülstruktur von 3a ohne H-Atome

Abb. 1b. Molekülstruktur von 3b ohne H-Atome

Wie aus den Stereobildern ersichtlich, unterscheiden sie sich signifikant durch die Ausrichtung des einsamen Elektronenpaars am Stickstoff zu den p_{π} -Orbitalen der (PC)-Doppelbindung.

Abb. 2 verdeutlicht, daß es nur bei einem kleinen Diederwinkel zwischen den durch die p_x-Orbitale gelegten Ebenen zu einer Überlappung kommen kann. Bei **3a** erlaubt

32

Abb. 2. Ebenen der p₇-Orbitale in 3a, b

der Diederwinkel α von 11.2° eine Konjugation des einsamen Elektronenpaars am Stickstoff mit der Doppelbindung, bei **3b** mit einem Diederwinkel α von 72.2° läßt sich diese Wechselwirkung dagegen ausschließen.

Verb.	$\delta (P = C)$	Dieder- winkel α*)	P1 = C1 [pm]	C1 – N1 [pm]	N1 – C10 [pm]	Dieder- winkel β*)	
3a	140	11.2°	170.0	137.9	148.1	82.8°	
3b	234	72.2°	167.1	144.5	139.6	22.7°	

Tab. 1. Wichtige Abstände und Diederwinkel in 3a, b

*) Siehe Abb. 2.

Dieser Zusammenhang kommt erwartungsgemäß auch in den unterschiedlichen Abständen P1-C1 und C1-N1 zum Ausdruck. Einem gegenüber 3b aufgeweiteten P1-C1-Abstand entspricht der verkürzte C1-N1-Abstand bei 3a. Als weitere Folge der Konjugation sind die Reste am Stickstoff in 3a fast planar angeordnet.

Der Befund, daß die Reste am N-Atom in **3b** trotz fehlender Konjugation zur (PC)-Doppelbindung ebenfalls annähernd in einer Ebene liegen, läßt sich durch Wechselwirkung mit dem π -System des Aromaten erklären, die bei **3a** nicht auftritt. Deutliche Hinweise hierauf lassen sich aus dem Diederwinkel β zwischen der Ebene um den Stickstoff und der des Phenylrings sowie aus den unterschiedlichen Abständen N1 – C10 ablesen.

Daß bei **3a** Konjugation des Stickstoffatoms mit der (PC)-Doppelbindung, aber keine Konjugation mit dem aromatischen Rest, bei **3b** dagegen keine Konjugation mit der Doppelbindung, wohl aber mit dem Aromaten beobachtet wird, führen wir auf die unterschiedliche Substitution am Phenylring zurück.

Bei allen 1,3-Diphosphapropenen 3, in denen der Phenylring ortho-substituiert ist, sind im ¹³P-NMR-Spektrum – unabhängig vom elektrischen Einfluß des Substituenten – die Signale der Doppelbindungsphosphoratome relativ hochfeldverschoben ($\delta_{(P=C)} \approx 140$), während alle para-substituierten oder unsubstituierten 1,3-Diphosphapropene 3 tieffeldverschoben sind ($\delta_{(P=C)} \approx 220$)⁹⁾. Diese Befunde lassen sich aim besten mit dem sterischen Einfluß des Substituenten im Rest R erklären. ortho-Substituenten behindern die zur Konjugation notwendige koplanare Einstellung der Aromaten- zur Stickstoffebene, während, wie Modellbetrachtungen zeigen, diese Konjugation bei para-Substituenten trotz der großen Reste am Stickstoff möglich ist.

Chem. Ber. 116 (1983)

Die Behinderung der Wechselwirkung des freien Elektronenpaars am Stickstoff mit dem aromatischen π -System scheint dessen Konjugation mit der (PC)-Doppelbindung zu begünstigen.

Experimenteller Teil

Sämtliche Arbeitsoperationen erfolgten unter Luft- und Feuchtigkeitsausschluß. Silylphosphan 1^{10} und das Isocyaniddichlorid $2a^{11}$ wurden nach bekannten Verfahren dargestellt, 2b analog zu 2a.

NMR-Spektren: ³¹P-NMR: Varian CFT 20, FT 80 A, 32.4 MHz, H₃PO₄ ext.; ¹³C-NMR: Bruker WH 90, 22.6 MHz, TMS int., für Tieffeldverschiebung gelten positive Vorzeichen und umgekehrt. – Elementaranalysen: Mikroanalytisches Labor Dr. F. Pascher, Bonn.

2-[(2-Chlorphenyl)(trimethylsilyl)amino]-1,3-diphenyl-3-(trimethylsilyl)-1,3-diphospha-1propen (3a): Zu 19.07 g (75.0 mmol) Phenylbis(trimethylsilyl)phosphan (1) in 100 ml Toluol wird unter Rühren eine Lösung von 7.80 g (37.5 mmol) (2-Chlorphenyl)isocyanid-dichlorid (2a) in 50 ml Toluol bei 0 °C langsam innerhalb 12 h zugetropft. Man läßt dann 24 h bei 0 °C nachrühren und engt bei Raumtemp. i. Vak. bis zur Trockene ein. Das als Nebenprodukt in geringen Mengen anfallende 1,3-Diphosphetan³⁾ (0.2 – 1.5 g) wird mit 20 ml *n*-Pentan ausgefällt und abfiltriert. Aus dem Filtrat kristallisiert **3a** langsam aus, wird dann abfiltriert und mit wenig kaltem *n*-Pentan nachgewaschen. Ausb. 9.0 g (48%), Schmp. 85 °C (Zers.). – ³¹P_c⁽¹H₁-NMR (CDCl₃): $\delta = 139.8$ (d, $J_{PCP} = 39.1$ Hz, =P), – 40.9 (d, $J_{PCP} = 39.1$ Hz, –P). – $^{13}C_c^{(1}$ H₁-NMR (CDCl₃): $\delta = 0.6$ (dd, $J_{PSiC} = 14.7$ Hz, $J_{P} = CPSiC = 10.3$ Hz, PSiC), 3.7 (d, $J_{PCNSiC} = 11.9$ Hz, NSiC), 181.3 (dd, $J_{P=C} = 102.0$ Hz, $J_{PC} = 24.8$ Hz, P = C). – ¹H-NMR (CDCl₃): $\delta = 0.13$ (d, $J_{PCNSiCH} = 2.2$ Hz, NSiCH₃), 0.36 (dd, $J_{PSiCH} = 5.6$ Hz, $J_{PCPSiCH} = 1.6$ Hz, PSiCH₃). $C_{25}H_{32}CINP_2Si_2$ (500.1) Ber. C 60.05 H 6.44 Cl 7.09 N 2.80 P 12.39 Si 11.23

Gef. C 60.19 H 6.50 Cl 7.05 N 2.81 P 12.20 Si 11.30

1,3-Diphenyl-2-[[4-(trifluormethyl)phenyl](trimethylsilyl)amino]-3-(trimethylsilyl)-1,3-diphospha-1-propen (**3b**): Zu 12.70 g (50.0 mmol) Phenylbis(trimethylsilyl)phosphan (**1**) in 75 ml Toluol wird in einem Guß 6.00 g (25.0 mmol) [4-(Trifluormethyl)phenyl]isocyanid-dichlorid (**2b**) gegeben und 24 h bei Raumtemp. gerührt. Man engt anschließend bis auf ca. 30 ml ein und läßt das Produkt erst bei Raumtemp., dann in der Kälte langsam auskristallisieren. Es wird abfiltriert und in *n*-Pentan gelöst, um das als Nebenprodukt anfallende 1,3,4,6-Tetraphospha-1,5-hexadien²) auszufällen und durch Filtration abzutrennen. Anschließend wird das Filtrat bis zur Trockene i. Vak. bei Raumtemp. eingeengt. Ausb. 5.9 g (44%), Schmp. 70 °C. $- {}^{31}P_1^{H}$ -NMR (C₆D₆): $\delta = 233.9$ (d, $J_{PCP} = 73.8$ Hz, = P), - 38.2 (d, $J_{PCP} = 73.8$ Hz, -P). $- {}^{13}C_1^{(1}H]$ -NMR (CDCl₃): $\delta = -0.14$ (dd, $J_{PSiC} = 14.0$ Hz, $J_{PCPSiC} = 6.8$ Hz, PSiC), 1.4 (s, NSiC), 193.5 (dd, $J_{PSiCH} = 5.4$ Hz, $J_{PCPSiCH} = 0.9$ Hz, PSiCH₃).

 $\begin{array}{c} C_{26}H_{32}F_{3}NP_{2}Si_{2} \ (533.7) \\ Gef. \ C \ 58.52 \ H \ 6.04 \ F \ 10.68 \ N \ 2.63 \ P \ 11.61 \ Si \ 10.55 \\ Gef. \ C \ 58.62 \ H \ 5.92 \ F \ 9.81 \ N \ 2.71 \ P \ 11.50 \ Si \ 9.55 \end{array}$

Röntgenstrukturanalyse von 3a*)

Beim Abkühlen einer bei Raumtemp. gesättigten Lösung von **3a** in *n*-Pentan bilden sich große, stark verwachsene Kristalle mit schlecht ausgebildeten Flächen. Die Substanz ist bei Abwesenheit

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50275, des Autors und des Zeitschriftenzitats angefordert werden.

Abstände	[pm]			Winkel [⁰]			
C11C11	172.2(9)	C24C23	137.1(12)	C1 2C11C11	117.3(8)	C35C30P1	121.7(7)
C1 2C1 1	143.4(14)	C25C24	139.5(11)	C10C11C11	121.2(8)	C35C30C31	117.0(8)
C10C11	133.5(15)	C20C25	139.1(12)	C10C11C12	121.4(8)	C32C31C30	121.1(7)
C13C12	129.9(13)	C21C20	138.4(10)	C13C12C11	117.4(11)	C33C32C31	120.3(10)
C14C13	144.7(18)	C25C20	139.1(12)	C14C13C12	121.0(10)	C34C33C32	120.0(11)
C15C14	130.9(14)	P2C20	183.4(7)	C15C14C13	128.1(9)	C35C34C33	120,0(8)
C10C15	154.7(10)	P2Si1	227.0(3)	C10C15C14	109.1(8)	C34C35C3O	121.6(9)
N1C10	148.1(12)	C3Si1	185.8(10)	C15C10C11	122.9(9)	C20C21C22	120.9(9)
Si2N1	180.4(7)	Si1C4	188.0(11)	N1C10C11	118.9(7)	C23C22C21	120.0(8)
CIN1	137.9(8)	Si1C5	185.9(8)	N1C10C15	118.0(8)	C24C23C22	119.2(8)
C6Si2	184.4(9)			Si2N1C10	114.8(5)	C25C24C23	121.4(9)
C7Si2	185.9(7)			C1N1C10	117.6(7)	C25C20C21	119.2(7)
C9Si2	187.1(8)			C1N1Si2	126.7(6)	P2C20C21	119.4(7)
P1C1	170.0(8)			C6512N1	110.6(3)	P2C20C25	121.1(5)
P2C1	186.9(8)			C7Si2N1	112.6(4)	C20P2C1	103.6(4)
C30P1	184.7(9)			C7512C6	113.3(4)	SilP2C1	106.2(2)
C31C30	138.8(13)			CBSi2N1	105.1(4)	SilP2C20	107.3(2)
C35C30	137,7(9)			C8512C6	107.9(4)	C3Si1P2	115.8(3)
C32C31	138.2(15)			C8Si2C7	106.7(4)	C4Si1P2	105.3(3)
C33C32	135.6(12)			P1C1N1	135,4(6)	C4Si1C3	108,5(4)
C34C33	135.7(17)			P2C1N1	112.8(6)	C5511P2	105.6(3)
C35C34	138.2(15)			P2C1P1	111.8(3)	C5511C3	111.9(4)
C21C22	138.5(12)			C30P1 C1	113,1(3)	C5511C4	109.4(5)
C23C22	138.9(16)			C31C30P1	119.6(5)		

Tab. 2. Die wichtigsten Abstände und Winkel in 3a. Standardabweichungen in Klammern

Tab. 3. Atomkoordinaten und Temperaturfaktoren von 3a. Standardabweichungen in Klammern

C11 0.3069(3) 0.5025(3) 0.7613(2) 0.0753(16) 0.0606(15) 0.0633(61) -0.0142(12) -0.0089(13) -0.0241(12 C11 0.4142(10) 0.6091(10) 0.6730(6) 0.0428(52) 0.0706(66) 0.0633(65) -0.0365(57) -0.0294(48) -0.0025(45) C12 0.5035(11) 0.5400(11) 0.5406(6) 0.0428(52) 0.0706(56) 0.0631(55) -0.0352(57) -0.0424(56) -0.00315(57) C13 0.5253(13) 0.5478(11) 0.5420(6) 0.0657(66) 0.0631(55) -0.0351(57) -0.0142(55) -0.0035(55) -0.0054(55) -0.0054(55) -0.0035(55) -0.0054(55) -0.0035(57) -0.0042(56) -0.0041(55) -0.0042(56) -0.0041(55) -0.0045(55) -0.0041(55) -0.0045(55) -0.0041(55) -0.0045(55) -0.0041(55) -0.0045(55) -0.0041(55) -0.0045(55) -0.0041(55) -0.0045(55) -0.0045(55) -0.0041(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0045(55) -0.0041(42) -0.0092(41) -0.0092(41) -0.0092(41) -0.0092(41) -0.0092(41) -0.0092(41) -0.0045(55) -0.0054(55) -0.0	Atom	x	¥	Z	U11	U22	U33	U 2 3	U1 3	Ų1 2
C11 0.4142(10) 0.6091(10) 0.6750(6) 0.0428(52) 0.0706(66) 0.0693(65) -0.0086(53) -0.0294(48) -0.0023(48 C12 0.5358(12) 0.6278(11) 0.5420(6) 0.0674(53) 0.0991(73) 0.0345(55) -0.0335(57) -0.0042(46) -0.0003(54 C15 0.5217(8) 0.6273(12) 0.540(7) 0.0686(69) 0.0827(79) 0.0623(71) 0.0122(60) -0.018(55) 0.0073(55) C15 0.5217(8) 0.8374(8) 0.5987(4) 0.0171(35) 0.0462(45) 0.0041(32) -0.039(53) -0.0358(55) -0.0258(55) C10 0.4208(10) 0.7406(9) 0.6731(6) 0.0482(54) 0.0462(54) 0.0041(32) -0.039(33) 0.0062(27) 0.0058(55) C10 0.4208(10) 0.7406(9) 0.6731(6) 0.0482(54) 0.0432(51) 0.0342(15) -0.0244(30) -0.0031(28) -0.0049(9) C10 0.4208(10) 0.7406(9) 0.6731(1) 0.0220(15) 0.0403(16) 0.0341(15) -0.0244(30) -0.0031(28) -0.0049(9) C5 0.5346(10) 0.9378(8) 0.7991(5) 0.0429(49) 0.0486(51) 0.0548(53) -0.0144(42) -0.092(41) -0.0194(42) C7 0.3709(10) 0.6947(9) 0.9231(5) 0.0431(50) 0.0524(54) 0.0508(52) 0.0001(43) -0.034(48) 0.0175(46) C1 0.1786(8) 0.8747(9) 0.7281(6) 0.0371(1) 0.0327(12) 0.0571(8) -0.0326(57) -0.0234(48) 0.0175(48) C1 0.1786(8) 0.8747(7) 0.7508(4) 0.0371(1) 0.0323(12) -0.0123(11) -0.0123(10) 0.0063(12) C1 0.0138(3) 0.9131(2) 0.6940(1) 0.0372(12) 0.575(14) 0.0367(12) -0.0230(14) -0.023(14) 0.0063(12) C1 0.0138(3) 0.9131(2) 0.6476(5) 0.0579(54) 0.0331(44) -0.0367(12) -0.023(11) -0.0061(3) -0.0063(13) C1 0.0137(8) 0.8251(8) 0.6618(4) 0.0372(12) 0.575(14) 0.0361(24) -0.0022(47) -0.005(13) -0.0061(3) -0.0063(12) -0.0061(3) -0.0061(3) -0.0061(3) -0.0061(3) -0.0061(3) -0.0061(3) -0.0061(3) -0.0061(3) -0.0061(3) -0.0063(12) -0.0061(1) -0.0061(1) -0.0060(4) -0.0061(4) -0.0060(4) -0.0061(4) -0.0060(4) -0.007(13) -0.019(47) C1 0.148(12) 0.8328(9) 0.5500(6) 0.075(67) 0.0484(52) 0.0323(44) -0.005(14) -0.006(4) -0.007(53) C1 -0.148(10) 0.932(19) 0.951(5) 0.0476(52) 0.0595(54) 0.0332(44) -0.001(41) -0.0060(4) -0.0075(4) C2 -0.3082(11) 0.732(1) 0.6519(53) 0.048(55) 0.0448(51) -0.032(49) -0.030(54) -0.007(54) -0.033(54) C2 -0.3082(11) 0.732(1) 1.0188(5) 0.0476(55) 0.0335(55) -0.0214(4) -0.005(4) -0.0075(4) -0.0075(4) C2 -0	C11	0.3069(3)	0.5025(3)	0.7613(2)	0,0753(16)	0,0606(15)	0.0636(15)	-0.0142(12)	-0.0089(13)	-0,0241(12)
C12 0.5035(11) 0.5480(11) 0.6068(6) 0.0474(53) 0.0891(73) 0.0345(55) -0.0352(57) -0.042(46) -0.0003(54 C13 0.5858(12) 0.6278(11) 0.5406(7) 0.0687(66) 0.0727(73) 0.0623(71) 0.0122(60) -0.0154(55) -0.0273(58 C14 0.5923(13) 0.7703(12) 0.5404(7) 0.0686(69) 0.0827(79) 0.0623(71) 0.0122(60) -0.0154(55) -0.0273(58 C15 0.5271(8) 0.8374(8) 0.5987(4) 0.0171(35) 0.0462(45) 0.0041(32" -0.0190(33) 0.0052(27) 0.0058(25) C10 0.4208(10) 0.7406(9) 0.6734(6) 0.0482(54) 0.0549(59) 0.1055(79) -0.0494(57) -0.0558(55) 0.0228(45) C10 0.4208(10) 0.7406(9) 0.6734(6) 0.0482(54) 0.0549(59) 0.1055(79) -0.0494(57) -0.0558(55) 0.0228(45) C10 0.4208(10) 0.7406(9) 0.6734(6) 0.0482(54) 0.0549(59) 0.1055(79) -0.0494(57) -0.0558(55) 0.0228(45) C10 0.465(2) 0.7704(2) 0.8174(1) 0.0281(11) 0.0370(12) 0.0324(12) -0.0149(10) -0.0076(9) -0.0049(49) C10 0.5346(10) 0.9378(8) 0.7991(5) 0.0429(14) 0.0370(12) 0.0324(15) -0.0149(10) -0.0076(9) -0.0049(49) C10 0.548(10) 0.9378(8) 0.7991(5) 0.0429(14) 0.0253(18) 0.0304(40) -0.0192(43) -0.0149(41) C10 0.778(68) 0.8745(7) 0.7508(4) 0.0301(41) 0.0253(18) 0.0304(40) -0.0090(13) 0.0054(12) -0.0023(14) -0.0152(14) -0.0053(12) -0.0082(12) -0.0082(13) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(14) -0.0081(C11	0,4142(10)	0,6091(10)	0.6750(6)	0.0428(52)	0.0706(66)	0.0693(65)	-0.0086(53)	-0.0299(48)	-0.0052(46)
C13 0.5858(12) 0.6278(11) 0.5420(6) 0.0657(6) 0.0724(73) 0.0591(69) -0.0339(57) -0.018(55) 0.0014(55 C14 0.5923(13) 0.7703(12) 0.540(7) 0.0686(69) 0.0827(79) 0.0623(71) 0.0125(6) -0.0754(57) -0.0273(58 C15 0.5217(8) 0.8374(8) 0.5987(4) 0.0171(35) 0.0462(45) 0.0041(32') -0.0190(33) 0.0062(27) 0.0028(58 N1 0.3363(7) 0.7936(6) 0.6734(6) 0.0673(12) 0.0320(13) 0.0041(32') -0.0244(30) -0.0031(28) -0.0049(9) C1 0.536(52) 0.7704(2) 0.8174(1) 0.0280(11) 0.0370(12) 0.0341(35) -0.0244(30) -0.0031(28) -0.0049(9) C1 0.536(52) 0.7704(2) 0.8174(1) 0.0281(11) 0.0370(12) 0.0382(12) -0.0144(42) -0.092(41) -0.0194(42) C1 0.1736(10) 0.9378(8) 0.7991(5) 0.0429(49) 0.0486(51) 0.0548(53) -0.0144(42) -0.092(41) -0.0194(42) C1 0.1786(8) 0.8747(9) 0.9281(5) 0.0431(50) 0.0523(18) 0.0304(40) -0.0526(57) -0.0234(48) 0.0175(46) C1 0.1786(8) 0.8747(7) 0.758(6) 0.0371(51) 0.0794(68) 0.0722(67) -0.0526(57) -0.0234(48) 0.0175(46) C1 0.1786(8) 0.8747(7) 0.758(6) 0.0371(51) 0.0794(68) 0.0722(37) -0.0526(57) -0.0234(48) 0.0175(46) C1 0.1786(8) 0.8747(7) 0.750(4) 0.0371(12) 0.0575(14) 0.0367(12) -0.0523(11) -0.0526(13) -0.0063(13) -0.0063(13) C1 0.0173(8) 0.8251(8) 0.6590(6) 0.0759(53) 0.0488(52) 0.0304(40) -0.0092(41) -0.0061(3) -0.0063(13) C1 0.0173(8) 0.8251(8) 0.650(6) 0.0759(67) 0.0488(52) 0.0364(48) -0.0092(41) -0.006(40) -0.019(47) C1 0.0183(12) 0.733(11) 0.4730(6) 0.0685(63) 0.0717(68) 0.0323(42) -0.0115(43) -0.005(13) -0.006(13) -0.006(13) -0.006(13) -0.006(13) -0.006(13) -0.006(13) -0.0071(16) 0.0231(12) 0.582(19) 0.5500(6) 0.0750(67) 0.0714(16) 0.0231(14) -0.032(14) -0.006(14) -0.0095(42) -0.006(14) -0.0095(42) -0.006(14) -0.0095(42) -0.019(41) -0.000(14) -0.0095(42) -0.019(41) -0.006(14) -0.0073(14) -0.005(50) 0.0171(16) 0.0235(14) -0.013(14) -0.005(50) 0.0171(16) 0.0235(14) -0.013(14) -0.005(14) -0.003(14) -0.005(14)	C12	0,5035(11)	0.5480(11)	0.6068(6)	0.0474(53)	0.0891(73)	0.0345(55)	-0.0352(57)	-0.0042(46)	-0.0003(54)
$ \begin{array}{c} C14 & 0.5923(13) & 0.7703(12) & 0.5404(7) & 0.0686(69) & 0.0827(79) & 0.0623(71) & 0.0122(60) & -0.0154(57) & -0.0273(58) \\ C15 & 0.527(18) & 0.8374(8) & 0.597(4) & 0.071(35) & 0.0642(45) & 0.0041(32)^* & -0.0190(33) & 0.005(27) & 0.0058(12) \\ C10 & 0.4208(10) & 0.7406(9) & 0.6734(6) & 0.0482(54) & 0.0549(59) & 0.1057(9) & -0.0494(57) & -0.0558(56) & 0.0228(45) \\ C10 & 0.4208(10) & 0.7406(9) & 0.6734(6) & 0.0482(54) & 0.0549(59) & 0.1057(9) & -0.0494(57) & -0.0598(56) & 0.0238(12) \\ C10 & 0.4665(2) & 0.7704(2) & 0.8174(1) & 0.0281(11) & 0.0370(12) & 0.0382(12) & -0.0149(10) & -0.0076(9) & -0.0049(49) \\ C10 & 0.5426(10) & 0.9378(8) & 0.7931(5) & 0.0432(50) & 0.0508(53) & -0.0144(12) & -0.0092(41) & -0.0149(14) \\ C7 & 0.3709(10) & 0.6947(9) & 0.9283(5) & 0.0371(51) & 0.0574(58) & 0.0508(52) & 0.0001(43) & -0.0192(43) & -0.0148(41) \\ C1 & 0.6526(10) & 0.6381(10) & 0.7871(6) & 0.0371(21) & 0.0528(15) & 0.0304(40) & -0.0090(33) & 0.0054(32) & -0.0142(41) \\ C1 & 0.1786(8) & 0.8745(7) & 0.7508(4) & 0.0371(21) & 0.0575(14) & 0.0304(47) & -0.0253(11) & -0.0054(32) & -0.0082(32) \\ C1 & 0.0137(8) & 0.8251(8) & 0.6084(4) & 0.0282(40) & 0.0448(47) & 0.0324(47) & -0.023(47) & -0.006(34) & -0.006(34) & -0.006(34) & -0.006(34) & -0.006(34) & -0.006(34) & -0.0014(33) & -0.0084(32) & -0.0142(36) & -0.0301(31) & -0.0084(32) & -0.0148(32) & -0.0148(32) & -0.0301(33) & -0.0148(32) & -0.0301(34) & -0.008(33) & -0.0148(32) & -0.0301(34) & -0.008(33) & -0.0148(32) & -0.0301(34) & -0.008(33) & -0.0148(32) & -0.0301(34) & -0.008(33) & -0.0148(32) & -0.0301(34) & -0.008(33) & -0.0148(32) & -0.0301(34) & -0.008(33) & -0.0148(32) & -0.0301(34) & -0.008(33) & -0.0148(33) & -0.0148(34) & -0.0001(34) & -0.008(34) & -0.0014(34) & -0.008(34) & -0.0014(34) & -0.008(34) & -0.0014(34) & -0.008(34) & -0.0014(34) & -0.008(34) & -0.0014(34) & -0.008(34) & -0.0014(34) & -0.008(34) & -0.0014(34) & -0.008(34) & -0.0014(34) & -0.008(34) & -0.0014(34) & -0.008(34) & -0.0014(34) & -0.008(34) & -0.0014(34) & -0.0014(34) & -0.008(34) & -0.0014(34) & $	C13	0.5858(12)	0.6278(11)	0.5420(6)	0.0657(66)	0.0724(73)	0.0591(69)	-0.0339(57)	-0.0118(55)	0.0014(55)
C15 0.5217(8) 0.8374(8) 0.5987(4) 0.0171(35) 0.0462(45) 0.0041(32)* -0.0190(33) 0.0062(27) 0.0058(25) C10 0.4208(10) 0.7406(9) 0.6737(46) 0.0442(54) 0.0157(79) -0.0194(37) -0.058(55) 0.0228(45) N1 0.3363(7) 0.7936(6) 0.6732(11) 0.0320(135) 0.0403(36) 0.0341(35) -0.0244(30) -0.0031(28) -0.0049(9) C5 0.536(51) 0.774(2) 0.8171(1) 0.0281(11) 0.0312(12) -0.0144(42) -0.0092(41) -0.0194(41) -0.0092(41) -0.0194(41) -0.0092(41) -0.0194(41) -0.0014(41) -0.0023(15) -0.0743(18) 0.0772(13) -0.0236(57) -0.0234(48) 0.0175(46) C1 0.7186(8) 0.7471(8) 0.9281(51) 0.0371(51) 0.0723(14) -0.0304(13) -0.0024(13) -0.0054(13) -0.0082(13) -0.0082(13) -0.0082(13) -0.0082(13) -0.0081(33) -0.0081(33) -0.0081(33) -0.0081(33) -0.0081(33) -0.008(13) -0.008(13) -0.008(13) -0.008(13) -0.008(13) -0.008(13) -0.0081(33) -0.008(13) -0.008(1	C14	0,5923(13)	0,7703(12)	0.5404(7)	0.0686(69)	0.0827(79)	0.0623(71)	0.0122(60)	-0,0154(57)	-0.0273(58)
C10 0.4208(10) 0.7406(9) 0.6734(6) 0.0482(54) 0.0549(59) 0.1035(79) -0.0434(57) -0.0558(56) 0.0228(45) 1.0.335(7) 0.7396(6) 0.742(3) 0.0220(35) 0.043(36) 0.0347(35) -0.0244(30) -0.0037(28) -0.0043(29) 512 0.4665(2) 0.7704(2) 0.8174(1) 0.0287(11) 0.0370(12) 0.0382(12) -0.0149(10) -0.0076(9) -0.0049(9) C 0.5346(10) 0.9378(8) 0.7931(5) 0.0287(11) 0.0370(12) 0.0382(12) -0.0149(10) -0.0076(9) -0.0049(24) C 0.3709(10) 0.6947(9) 0.9283(5) 0.0434(50) 0.0524(54) 0.0508(52) -0.0144(142) -0.0092(41) -0.0149(14) C 0.0526(10) 0.6381(10) 0.7878(6) 0.0377(51) 0.0794(68) 0.0508(52) -0.0001(43) -0.0192(43) -0.0114(41) C 0.1786(8) 0.8745(7) 0.7508(4) 0.0307(11) 0.0253(18) 0.0304(40) -0.0903(31) 0.0054(32) -0.0082(32) 1.0.0348(3) 0.9131(2) 0.6944(4) 0.0282(40) 0.0448(47) 0.0323(42) -0.012(36) -0.0081(33) -0.0063(32) C 0.0137(8) 0.8251(8) 0.6084(4) 0.0282(40) 0.0448(47) 0.0323(42) -0.012(36) -0.0081(33) -0.0063(32) C 0.0663(12) 0.6528(9) 0.5500(6) 0.0750(67) 0.0488(52) 0.033(4(4) -0.020(44) -0.000(54) -0.0014(42) C 210 0.0438(12) 0.720(11) 0.4731(6) 0.0683(64) 0.0771(68) 0.0638(64) -0.020(44) -0.0001(33) -0.013(45) C 20014(12) 0.528(9) 0.5500(6) 0.0750(67) 0.0484(56) 0.0631(64) -0.020(44) -0.0001(33) -0.013(45) C 20014(12) 0.528(9) 0.5500(6) 0.0750(61) 0.0484(56) 0.0631(64) -0.020(44) -0.0001(53) -0.013(45) -0.003(44) -0.0071(53) C 210 0.1638(11) 0.728(11) 0.4221(5) 0.0663(54) 0.0717(68) 0.0305(54) -0.0148(48) -0.0094(44) -0.0071(53) C -0.3082(11) 0.8702(11) 1.0188(5) 0.0487(57) 0.0720(68) 0.0305(54) -0.012(44) -0.0001(44) -0.0075(55) C -0.03082(11) 0.8702(11) 1.0188(5) 0.0487(57) 0.0720(68) 0.0305(54) -0.001(44) -0.005(40) -0.0005(40) C -0.03082(11) 0.8702(11) 1.0188(5) 0.0487(55) 0.0305(54) -0.012(46) -0.0017(44) -0.0055(56) C -0.3082(11) 0.8702(11) 1.0188(5) 0.0487(55) 0.0305(56) -0.0213(45) -0.001(44) -0.005(40) -0.0005(45) C -0.022(9) 0.730(8) 0.911(5) 0.0258(45) 0.0446(55) 0.0305(56) -0.0213(45) -0.005(46) -0.0017(44) -0.0053(32) -0.0033(42) -0.003(34) -0.0033(42) -0.003(34) -0.0053(32) -0.0033(42) -0.003(4	C15	0,5217(8)	0,8374(8)	0,5987(4)	0.0171(35)	0.0462(45)	0.0041(32)	-0.0190(33)	0.0062(27)	0.0058(32)
N1 0.3363(7) 0.7936(6) 0.7482(3) 0.0320(35) 0.0403(36) 0.0341(35) -0.0244(30) -0.0031(28) -0.0043(29) Si2 0.4665(2) 0.7704(2) 0.8171(1) 0.0281(11) 0.0312(12) -0.014(42) -0.0092(41) -0.0049(9) C6 0.5346(10) 0.9378(8) 0.7991(5) 0.0429(49) 0.0486(51) 0.0548(53) -0.014(42) -0.0092(41) -0.0194(41) C7 0.3709(10) 0.6947(9) 0.9281(5) 0.0431(50) 0.0528(15) 0.0003(12) -0.0526(57) -0.0234(48) 0.0175(46) C8 0.6526(10) 0.6338(10) 0.7878(6) 0.0371(51) 0.0723(14) -0.0361(23) -0.0054(12) -0.0526(57) -0.0054(12) -0.0054(12) -0.0054(12) -0.0054(12) 0.0054(12) 0.0054(12) 0.0054(12) 0.0054(12) 0.0528(13) 0.0448(47) -0.0321(49) -0.0054(13) -0.0060(13) -0.0060(13) -0.0060(13) -0.0060(13) -0.0060(13) -0.0060(14) -0.0051(35) -0.019(13) -0.0060(14) -0.0051(35) -0.019(13) -0.0060(14) -0.0051(35) -0.016(14) -0.0051(35) -0.019(13)	C10	0.4208(10)	0.7406(9)	0.6734(6)	0.0482(54)	0.0549(59)	0.1035(79)	-0.0494(57)	-0.0558(56)	0.0228(45)
si2 0.4665(2) 0.7704(2) 0.8174(1) 0.0370(12) 0.0382(12) -0.0149(10) -0.076(9) -0.0049(9) C 0.5376(10) 0.9378(8) 0.7971(5) 0.0429(49) 0.0486(51) -0.0584(53) -0.0149(14) -0.0092(14) -0.0192(14) -0.0192(14) -0.0192(14) -0.0192(14) -0.0192(14) -0.0192(14) -0.0192(14) -0.0192(14) -0.0192(14) -0.0192(14) -0.0175(16) 0.0387(12) 0.0584(53) 0.03074(10) -0.0372(12) 0.0575(14) 0.0307(12) -0.0590(13) -0.0092(14) -0.0082(12) -0.0082(12) -0.0082(12) -0.0081(13) -0.0091(13) -0.0092(14) -0.0063(13) -0.0061(13) -0.0061(13) -0.0061(13) -0.0061(13) -0.0061(13) -0.0061(13) -0.0061(14) -0.037(14) 0.033(141) -0.030(14) -0.0061(14) -0.032(14) -0.0061(14) -0.032(14) -0.0061(14) -0.032(14) -0.0061(13) -0.008(13) -0.0061(14) -0.032(14) -0.006(14) -0.0061(14) -0.032(14) -0.0061(14) -0.032(14) -0.0061(14) -0.032(14) <	N1	0.3363(7)	0.7936(6)	0.7482(3)	0.0320(35)	0.0403(36)	0.0341 (35)	-0.0244(30)	-0,0031(28)	-0.0043(29)
C6 0.5346(10) 0.9378(8) 0.7991(5) 0.0429(49) 0.0486(51) 0.0548(53) -0.014(42) -0.092(41) -0.019(41) C8 0.6526(10) 0.6338(10) 0.7878(6) 0.0371(51) 0.0792(67) -0.0526(57) -0.0023(14) -0.0023(14) -0.0023(14) 0.0071(41) C8 0.6526(10) 0.6338(10) 0.7878(6) 0.0371(51) 0.0792(67) -0.0526(57) -0.0023(14) 0.00372(12) -0.05273(18) 0.0051(13) -0.0023(11) -0.0023(11) -0.0023(11) -0.0051(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0006(13) -0.0104(12) -0.138(12) 0.238(11) 0.451(13) 0.0484(53) -0.034(41) -0.0006(14) -0.0006(14) -0.0006(14) -0.0006(14) -0.0006(14) -0.0006(14) -0.0006(13) -0.0104(13) -0.0006(13) -0.01043(11) -0.0104(11)<	Si2	0.4665(2)	0.7704(2)	0.8174(1)	0.0281(11)	0,0370(12)	0,0382(12)	+0.0149(10)	-0.0076(9)	-0.0049(9)
C7 0.3709(10) 0.6947(9) 0.9283(5) 0.0034(50) 0.524(54) 0.508(52) 0.0001(43) -0.0192(43) -0.0172(46) C6 0.6526(10) 0.6381(10) 0.787(66) 0.0377(51) 0.0794(68) 0.03074(17) -0.0592(57) -0.0523(42) -0.0082(12) -0.0082(12) -0.0083(12) -0.0082(12) -0.0083(12) -0.0083(12) -0.0082(12) -0.0083(12) -0.0081(33) -0.012(16) -0.0081(33) -0.0081(33) -0.0081(33) -0.0081(33) -0.0081(33) -0.0083(12) -0.008(12) -0.008(12) -0.008(13) -0.0081(33) -0.0014(44) -0.0014(44) -0.0014(44) -0.0014(44) -0.0014(44) -0.0014(44) -0.0014(44) -0.0014(44) -0.00110(43) -0.0021(44) -0.0014(44)	C6	0.5346(10)	0.9378(8)	0,7991(5)	0.0429(49)	0.0486(51)	0.0548(53)	-0.0144(42)	-0.0092(41)	-0.0194(41)
C8 0.6526(10) 0.6338(10) 0.7878(6) 0.0371(51) 0.7946(68) 0.7926(57) -0.0526(57) -0.0505(57) -0.014(18) -0.0502(57) -0.015(43) -0.005(40) -0.005	C7	0.3709(10)	0.6947(9)	0.9283(5)	0.0434(50)	0.0524(54)	0,0508(52)	0,0001(43)	-0.0192(43)	-0.0114(41)
C1 0.1786(8) 0.8745(7) 0.7508(4) 0.0301(41) 0.0233(38) 0.0304(40) -0.0090(32) 0.0054(32) -0.0082(32) C1 0.0737(8) 0.8251(8) 0.6084(4) 0.0282(40) 0.0448(47) 0.0337(42) -0.012(36) -0.0081(33) -0.0063(32) C1 0.0472(10) 0.7037(9) 0.617(5) 0.0579(5) 0.0448(47) 0.0337(42) -0.012(36) -0.0081(33) -0.0063(32) C1 0.0472(10) 0.7037(9) 0.617(5) 0.0579(5) 0.0488(52) 0.0334(48) -0.032(42) -0.0067(4) -0.0104(42) C1 0.0472(10) 0.7037(9) 0.617(5) 0.0579(5) 0.0488(52) 0.0334(48) -0.032(42) -0.0127(5) 0.0104(42) C1 0.0472(10) 0.7037(9) 0.6170(6) 0.0683(64) 0.0177(68) 0.0488(59) -0.032(42) -0.0087(5) -0.013(44) -0.0071(53) -0.013(44) -0.0071(53) -0.0148(48) -0.0074(53) -0.0148(48) -0.0094(44) -0.0071(53) -0.0148(48) -0.0094(44) -0.0071(53) -0.0051(52) -0.158(40) -0.011(41) -0.003(40) -0.0075(53) -0.0155(50) -0.114(10) 0.932(29) 0.529(5) 0.0566(52) 0.0445(48) 0.0285(44) -0.0101(41) -0.003(40) -0.0075(53) -0.0155(50) -0.015(53) -0.0155(50) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.015(53) -0.005(53) -0.005(53) -0.005(53) -0.015(53) -0.005(54) -0.005(6()) -0.0078(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.006(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0067(10) -0.0078(10) -0.0078(10) -0.0078(10) -0.0078(10) -0.0078(10) -0.00	C8	0.6526(10)	0.6338(10)	0.7878(6)	0.0377(51)	0.0794(68)	0.0792(67)	-0.0526(57)	-0.0234(48)	0.0175(46)
P1 0.0348(3) 0.9131(2) 0.6940(1) 0.0372(12) 0.0375(14) 0.0367(12) 0.0367(12) 0.0367(12) 0.0367(12) 0.0367(12) 0.0063(13) 0.0139(14) 0.0139(14) 0.0139(14) 0.0139(14) 0.0139(14) 0.0139(14) 0.0139(14) 0.0139(14) 0.0139(14) 0.0061(14) 0.0061(14) 0.0061(14) 0.0061(14) 0.0061(14) 0.0061(14) 0.0061(14) 0.001(14) 0.0061(14) 0.001(14) 0.001(14) 0.001(14) 0.001(14) 0.0061(14) 0.001(14) 0.001(14) 0.001(14) 0.001(14) 0.001(14) 0.001(14) 0.001(14) 0.001(14) 0.001(14) 0.001(14) 0.001(14) 0.001(14) 0.001(14) 0.0001(14) 0.0005(1	C1	0.1786(8)	0.8745(7)	0.7508(4)	0.0301(41)	0.0253(38)	0.0304(40)	-0.0090(32)	0.0054(32)	-0.0082(32)
C30 0.1037(8) 0.8251(8) 0.6084(4) 0.0282(40) 0.0488(52) 0.033(42) 0.012(35) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.006(30) 0.0010(30) 0.0130(41) 0.0020(41) 0.006(30) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.0130(41) 0.003(41) 0.0045(52) 0.0451(51) 0.0351(51	P1	0.0348(3)	0.9131(2)	0.6940(1)	0.0372(12)	0.0575(14)	0.0367(12)	-0.0253(11)	-0.0123(10)	0.0053(10)
C31 0.0472(10) 0.7037(9) 0.6176(5) 0.0519(53) 0.0488(52) 0.0364(48) -0.0092(41) -0.0060(40) -0.019(47) C32 0.0669(12) 0.6528(9) 0.5500(6) 0.0750(67) 0.0488(56) 0.0633(64) -0.0230(49) -0.030(53) -0.019(47) C33 0.1438(12) 0.7203(11) 0.4730(6) 0.0683(64) 0.0717(68) 0.0488(59) -0.0329(51) -0.0276(50) 0.0119(47) C34 0.2018(12) 0.8328(9) 0.5290(5) 0.0476(52) 0.0591(54) 0.0333(14) -0.015(43) -0.0082(40) -0.0095(42) C32 -0.168(100 0.9392(9) 0.961(5) 0.0565(23) 0.0485(54) 0.0285(44) -0.0115(43) -0.0082(40) -0.0095(42) C32 -0.3082(11) 0.8702(11) 1.0188(5) 0.0487(57) 0.0720(68) 0.0305(50) -0.012(45) -0.0001(43) -0.0055(52) C32 -0.3082(11) 0.7391(11) 1.0188(5) 0.0487(57) 0.0720(68) 0.0305(50) -0.012(45) -0.0001(43) -0.0055(52) C32 -0.3082(11) 0.7391(11) 1.025(5) 0.0584(58) 0.0486(55) 0.0446(51) -0.0050(46) -0.0177(47) -0.0231(45) -0.003(14) -0.0053(32) -0.0033(52) C32 -0.3082(11) 0.7391(11) 1.0188(5) 0.0584(58) 0.0486(55) 0.0446(51) -0.0050(46) -0.0177(47) -0.0213(45) C32 -0.3082(11) 0.7391(8) 0.911(5) 0.0584(58) 0.0486(55) 0.0446(51) -0.0050(46) -0.0177(47) -0.0213(45) -0.003(12) -0.0033(12) -0.0031(14) -0.0031(14) -0.	C30	0.1037(8)	0,8251(8)	0.6084(4)	0.0282(40)	0.0448(47)	0.0323(42)	-0.0112(36)	-0.0081(33)	-0.0063(35)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.0472(10)	0.7037(9)	0.6176(5)	0.0519(53)	0.0488(52)	0.0364(48)	-0.0092(41)	-0.0060(40)	-0.0104(42)
$ \begin{array}{c} c_{33} c_{3} c_{1438}(1_2) \ c_{7203}(1_1) \ c_{4730}(6) \ c_{704}(6_1) \ c_{707}(6_16) \ c_{704}(8_16_2) \ c_{702}(3_16_1) \ c_{704}(8_16_1) \ c_{7$	C32	0.0669(12)	0.6528(9)	0.5500(6)	0.0750(67)	0.0484(56)	0.0693(64)	-0.0230(49)	-0.0300(53)	-0.0139(47)
$ \begin{array}{c} C34 & 0.2018(12) & 0.8384(11) & 0.4621(5) & 0.0645(63) & 0.0741(68) & 0.0273(49) & -0.0148(48) & -0.0094(44) & -0.0047(53) \\ C35 & 0.1774(10) & 0.8924(9) & 0.529(5) & 0.0476(52) & 0.059(54) & 0.0393(48) & -0.011(41) & -0.003(40) & -0.005(42) \\ C21 & -0.1868(10) & 0.9392(9) & 0.9619(5) & 0.0506(52) & 0.0445(49) & 0.0285(44) & -0.0101(41) & -0.003(40) & -0.005(52) \\ C22 & -0.3052(111) & 0.7298(111) & 1.0232(5) & 0.0450(56) & 0.0688(77) & 0.0337(52) & -0.012(45) & -0.0001(44) & -0.0103(52) \\ C23 & -0.3053(111) & 0.671(9) & 0.973(55) & 0.0487(55) & 0.0486(55) & 0.0486(51) & -0.0057(50) & -0.012(44) & -0.013(52) \\ C24 & -0.183(111) & 0.661(79) & 0.973(55) & 0.0482(49) & 0.0394(49) & 0.0345(46) & -0.0056(53) & -0.0153(40) & -0.0053(32) & -0.0153(42) \\ C25 & -0.0622(9) & 0.7309(8) & 0.9116(55) & 0.0482(49) & 0.0394(49) & 0.0345(46) & -0.0046(31) & -0.0053(32) & -0.0033(34) \\ C20 & -0.0647(13) & 0.8715(8) & 0.973(41) & 0.0425(40) & 0.0426(47) & 0.0232(39) & -0.0106(34) & -0.0033(12) & -0.0033(14) \\ C3 & -0.0264(10) & 1.221(2) & 0.8616(12) & 0.830(13) & 0.0310(12) & 0.0333(12) & -0.0038(49) & -0.0024(9) & -$	C33	0.1438(12)	0.7203(11)	0.4730(6)	0.0683(64)	0.0717(68)	0.0488(59)	-0.0329(51)	-0.0276(50)	0.0110(53)
C35 0.1774(10) 0.8928(9) 0.5290(5) 0.0476(52) 0.0599(4) 0.0393(48) -0.015(43) -0.0082(40) -0.0095(42) C21 -0.168(10) 0.9392(9) 0.961(5) 0.0506(52) -0.0485(44) -0.0115(43) -0.0082(40) -0.0095(42) C22 -0.3082(11) 0.8702(11) 1.0188(5) 0.0487(57) 0.720(68) 0.3035(50) -0.012(45) -0.0001(43) -0.0001(43) -0.0005(46) C23 -0.3082(11) 0.7391(11) 0.7321(5) 0.0487(57) 0.720(68) 0.3037(52) -0.005(46) -0.012(45) -0.001(43) -0.001(43) -0.001(43) -0.001(43) -0.001(43) -0.0103(42) -0.0130(52) -0.0446(51) -0.0106(43) -0.015(46) -0.0147(4) -0.015(46) -0.0147(4) -0.015(46) -0.015(46) -0.015(46) -0.015(46) -0.015(46) -0.015(46) -0.015(46) -0.0015(46) -0.015(46) -0.0015(46) -0.015(46) -0.0015(46) -0.0015(46) -0.0015(46) -0.0015(46) -0.0015(46) -0.0015(46) -0.0015(46) -0.0015(46)	C34	0.2018(12)	0.8384(11)	0,4621(5)	0.0645(63)	0.0741(68)	0.0273(49)	-0.0148(48)	-0.0094(44)	-0.0047(53)
C21 -0.1868(10) 0.9392(9) 0.9619(5) 0.0506(52) 0.0445(49) 0.0285(44) -0.0101(41) -0.0030(40) -0.0075(43) C22 -0.3052(11) 0.8702(11) 1.018(5) 0.0487(57) 0.0720(68) 0.305(50) -0.012(45) -0.0007(43) -0.0055(50) C23 -0.3059(11) 0.7298(11) 1.0222(5) 0.0450(56) 0.0858(77) 0.0327(52) 0.0057(50) -0.0102(44) -0.0301(52) C24 -0.1831(11) 0.6617(9) 0.973(5) 0.0584(58) 0.0486(55) 0.0446(51) -0.0057(46) -0.0105(48) -0.013(48) C25 -0.0622(9) 0.7309(8) 0.9116(5) 0.0422(49) 0.0394(49) 0.0345(46) -0.0046(37) -0.015(39) -0.0153(40) C20 -0.0647(8) 0.8715(8) 0.9073(4) 0.0286(10) 0.0327(11) 0.0223(39) -0.0108(49) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0034(52) -0.0032(18) E31 -0.0147(3) 1.1917(2) 0.7832(1) 0.0480(13) 0.0310(12) 0.0333(12) -0.0086(9) -0.0074(40) -0.0054(47) -0.0081(44) C3 -0.226(11) 1.2212(9) 0.7882(5) 0.0660(59) 0.0327(46) 0.0534(54) -0.037(40) -0.0031(40) -0.0031(40) -0.0081(44) -0.0024(49) -0.032(12) -0.0334(52) -0.031(44) -0.031(40) -0.0031(40) -0.0024(49) -0.012(44) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0226(47) -0.0237(40) -0.037(40) -0.037(40) -0.037(40) -0.0276(46) -0.012(44) -0.023(44) -0.032(44) -0.032(44) -0.032(44) -0.032(44) -0.032(44) -0.0226(47) -0.0226(47) -0.0266(47) -0.0226(47)	C35	0.1774(10)	0,8928(9)	0.5290(5)	0.0476(52)	0.0509(54)	0.0393(48)	-0.0115(43)	-0.0082(40)	-0.0095(42)
C22 -0.3082(11) 0.8702(11) 1.0188(5) 0.0487(57) 0.720(68) 0.3035(50) -0.021(45) -0.0001(43) -0.0055(50) C23 -0.3087(11) 0.7281(11) 0.2212(5) 0.0487(57) 0.0720(68) 0.3037(52) 0.0055(50) 0.0012(43) -0.0012(43) -0.0012(43) -0.0103(52) C24 -0.1833(11) 0.6617(9) 0.973(5) 0.0584(58) 0.0486(55) 0.0446(51) -0.005(46) -0.0177(47) -0.213(48) C25 -0.052(29) 0.7309(8) 0.911(5) 0.0426(47) 0.0345(46) -0.0046(37) -0.005(39) -0.0153(39) -0.0153(39) -0.0153(39) -0.0031(31) -0.00276(11) -0.0003(31) -0.0023(48) -0.0032(48) -0.0032(48) -0.0032(41) -0.0033(12) -0.0033(12) -0.0033(12) -0.0033(12) -0.0031(31) -0.0032(81) -0.0032(81) -0.0032(81) -0.0032(81) -0.0032(81) -0.0032(81) -0.0033(12) -0.003(14) -0.0033(12) -0.003(14) -0.003(14) -0.003(14) -0.003(14) -0.0032(14) -0.0032(41) -0.0038	C21	-0.1868(10)	0.9392(9)	0.9619(5)	0.0506(52)	0.0445(49)	0.0285(44)	-0.0101(41)	-0.0030(40)	-0.0075(43)
C23 -0.3059(11) 0.7298(11) 1.0222(5) 0.0450(56) 0.0858(77) 0.0327(52) 0.0057(50) -0.0102(44) -0.0303(52 C24 -0.1831(11) 0.6617(9) 0.9703(5) 0.0584(58) 0.0486(55) 0.0446(51) -0.005(46) -0.017(47) -0.0121(48 C25 -0.0622(9) 0.7309(8) 0.9116(5) 0.0422(49) 0.0394(49) 0.0345(46) -0.0046(37) -0.015(39) -0.0151(40 C20 -0.067(18) 0.8715(8) 0.9373(4) 0.0555(40) 0.0426(47) 0.0232(13) -0.0108(34) -0.0053(32) -0.0031(34) C20 -0.067(18) 0.8715(8) 0.9073(4) 0.0525(40) 0.0327(11) 0.0226(11) -0.0109(9) -0.0049(9) -0.0032(8) S11 -0.0147(3) 1.1917(2) 0.7832(1) 0.0406(13) 0.0317(11) 0.0327(51) -0.0086(9) -0.0078(10) -0.0067(10) C3 -0.2264(10) 1.2212(9) 0.7682(6) 0.0590(56) 0.0456(51) 0.0534(54) -0.0374(44) -0.0078(40) -0.008(44) C4 -0.0226(11) 1.2918(8) 0.8588(5) 0.0660(59) 0.0327(46) 0.0534(55) 0.0031(44) -0.037(46) -0.0107(46) -0.01078(46) -0.0107(46) -0.0178(46) -0.0173(46) -0.0073(46) -0.0170(46) -0.0178(46) -0.0120(46) -0.0173(46) -0.0073(46) -0.0073(46) -0.0073(46) -0.0073(46) -0.0170(46) -0.0178(46) -0.0120(46) -0.0178(46) -0.0173(46) -0.0226(47) -0.0037(49) -0.0037(49) -0.00264(47) -0.	C22	-0.3082(11)	0.8702(11)	1.0188(5)	0.0487(57)	0.0720(6B)	0.0305(50)	-0.0123(45)	~0.0001(43)	-0.0055(50)
C24 -0.1833(11) 0.6617(9) 0.9703(5) 0.0584(58) 0.0486(55) 0.0446(51) -0.0050(46) -0.0177(47) -0.0213(48) C25 -0.052(29) 0.7309(8) 0.9116(5) 0.0486(55) 0.0446(51) -0.005(31) -0.005(31) -0.005(31) -0.003(31) -0.0031(40) 0.0225(40) 0.2322(30) -0.0108(34) -0.0033(32) -0.0033(32) -0.0033(32) -0.0033(32) -0.0032(8) 511 -0.0147(3) 1.1917(2) 0.7822(41) 0.0406(13) 0.0126(51) -0.0333(12) -0.0086(9) -0.0027(40) -0.0027(40) -0.0027(40) -0.0027(40) -0.0027(40) -0.0017(41) -0.0033(14) -0.0032(14) -0.0033(14) -0.0032(14) -0.0037(40) -0.0027(40) -0.0027(40) -0.0027(40) -0.0027(40) -0.0027(40) -0.0017(41) -0.0017(41) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40) -0.0017(40)	C23	-0.3059(11)	0.7298(11)	1.0232(5)	0.0450(56)	0.0858(77)	0.0327(52)	0.0057(50)	-0.0102(44)	-0.0303(52)
C25 -0.0622(9) 0.7309(8) 0.9116(5) 0.0442(49) 0.0394(49) 0.0345(46) -0.0046(37) -0.015(30) -0.0153(40) C.0033(32) -0.0153(40) -0.0255(40) 0.0426(47) 0.0232(39) -0.0163(34) -0.0033(32) -0.0033(34) -0	C24	-0.1833(11)	0.6617(9)	0.9703(5)	0.0584(58)	0.0486(55)	0.0446(51)	-0.0050(46)	-0.0177(47)	-0.0213(48)
C20 -0.0647(8) 0.8715(8) 0.9073(4) 0.0255(40) 0.0426(47) 0.0222(39) -0.0108(34) -0.0053(32) -0.0033(34) P2 0.1022(2) 0.9616(2) 0.8383(1) 0.0255(40) 2.0726(11) -0.0109(9) -0.0078(10) -0.0032(8) S11 -0.0147(3) 1.1917(2) 0.7832(1) 0.0400(13) 0.0310(12) 0.0333(12) -0.0086(9) -0.0078(10) -0.0067(10) C3 -0.2264(10) 1.2212(9) 0.7682(6) 0.0580(55) 0.0456(51) 0.0534(54) -0.0137(40) -0.0179(46) -0.0108(47) -0.0081(44) C4 -0.0226(11) 1.2918(8) 0.8588(5) 0.0660(59) 0.0327(46) 0.0534(54) -0.0137(40) -0.0179(46) -0.0101(41) -0.0264(49) -0.0120(46) -0	C25	-0.0622(9)	0.7309(8)	0.9116(5)	0.0442(49)	0.0394(49)	0.0345(46)	-0.0046(37)	-0.0105(39)	-0.0153(40)
P2 0.1022(2) 0.9616(2) 0.8383(1) 0.0288(10) 0.0327(11) 0.0276(11) -0.0109(9) -0.003(9) -0.0012(9) S11 -0.0147(3) 1.1917(2) 0.7822(1) 0.0400(13) 0.0310(12) 0.0333(12) -0.0067(10) 0.0580(5) -0.078(10) -0.0057(10) -0.011(4) -0.0154(4) -0.0051(10) -0.011(4) -0.0154(4) -0.0051(10) -0.011(4) -0.0154(4) -0.0154(4) -0.0154(4) -0.011(4) -0.0154(4) -0.011(4)	C20	-0.0647(8)	0.8715(8)	0.9073(4)	0.0255(40)	0.0426(47)	0.0232(39)	-0.010B(34)	-0.0053(32)	-0.0033(34)
\$11 −0.0147(3) 1.1917(2) 0.7832(1) 0.0400(13) 0.0310(12) 0.0333(12) -0.0086(9) -0.0078(10) -0.0067(10 C3 -0.2264(10) 1.2212(9) 0.7682(6) 0.0580(56) 0.0456(51) 0.0582(56) -0.031(44) -0.0154(47) -0.0081(44) C4 -0.0226(11) 1.2918(8) 0.8588(5) 0.0660(59) 0.0327(46) 0.0534(54) -0.0137(40) -0.0179(46) -0.0110(41) C5 0.1322(12) 1.2539(10) 0.6837(5) 0.073(67) 0.0488(55) 0.0436(55) 0.0031(44) -0.0031(49) -0.0264(49)	P2	0.1022(2)	0.9616(2)	0.8383(1)	0.0288(10)	0.0327(11)	0.0276(11)	-0.0109(9)	-0.0049(9)	-0.0032(8)
C3 -0.2264(10) 1.2212(9) 0.7682(6) 0.0580(56) 0.0456(51) 0.0582(56) -0.0211(44) -0.0154(47) -0.0081(44) C4 -0.0226(11) 1.2918(8) 0.8588(5) 0.0660(59) 0.0327(46) 0.0534(54) -0.0137(40) -0.0179(46) -0.0110(41) C5 0.1322(12) 1.2539(10) 0.6837(5) 0.0773(67) 0.0488(55) 0.0436(55) 0.0013(44) -0.0031(49) -0.0264(49)	Sil	-0.0147(3)	1.1917(2)	0.7832(1)	0.0400(13)	0.0310(12)	0.0333(12)	-0,0086(9)	-0,0078(10)	-0.0067(10)
C4 -0.0226(11) 1.2918(8) 0.8588(5) 0.0660(59) 0.0327(46) 0.0534(54) -0.0137(40) -0.0179(46) -0.0110(41) C5 0.1322(12) 1.2539(10) 0.6837(5) 0.0773(67) 0.0488(55) 0.0436(55) 0.0013(44) -0.0031(49) -0.0264(49)	C3	-0.2264(10)	1.2212(9)	0.7682(6)	0.0580(56)	0.0456(51)	0.0582(56)	-0.0211(44)	-0.0154(47)	-0.0081(44)
C5 0.1322(12) 1.2539(10) 0.6837(5) 0.0773(67) 0.0488(55) 0.0436(55) 0.0013(44) -0.0031(49) -0.0264(49)	C4	-0.0226(11)	1.2918(8)	0.8588(5)	0.0660(59)	0.0327(46)	0.0534(54)	-0.0137(40)	-0.0179(46)	-0.0110(41)
	C5	0.1322(12)	1.2539(10)	0.6837(5)	0.0773(67)	0.0488(55)	0.0436(55)	0.0013(44)	-0.0031(49)	-0.0264(49)

* Der Temperaturfaktor von C 15 zeigt aus ungeklärten Gründen bei mehreren unabhängigen Messungen anomales Verhalten.

von Sauerstoff und Feuchtigkeit beständig, zersetzt sich jedoch bei Raumtemp. unter Einwirkung von Röntgenstrahlen rasch. Zur Datensammlung auf dem Vierkeisdiffraktometer CAD4 (Enraf-Nonius, Delft) wurde ein etwa $0.3 \times 0.1 \times 0.1$ mm großes Kristallbruchstück in ein Markröhrchen eingeschmolzen und auf 158 K gekühlt.

3a kristallisiert triklin in der Raumgruppe $P\bar{1}$ mit den Gitterkonstanten a = 866.5(4) pm, b = 1009.5(3) pm, c = 1742.4(7) pm, $\alpha = 71.01(3)^{\circ}$, $\beta = 72.84(3)^{\circ}$, $\gamma = 73.80(3)^{\circ}$. Das Zellvolumen beträgt 1348.5 · 10⁶ pm³; die Elementarzelle enthält 2 Formeleinheiten. Im Bereich 4° < 2 Θ < 44°

Chem. Ber. 116 (1983)

wurden 3253 Reflexe vermessen (Mo- K_{α} -Strahlung, Graphitmonochromator). Nach Lorentz- und Polarisations-Korrektur wurden 3202 unabhängige Strukturfaktoren mit $F_{o} > 3\sigma$ (F_{o}) zur Lösung der Struktur verwendet. Die Lageparameter aller Atome außer Wasserstoff wurden mit direkten Methoden (MULTAN 78) ermittelt und mit den Least-Squares-Programmen der Systeme SHELX und XRAY 76 weiter verfeinert. Dabei wurden Streufaktoren für ungeladene Atome (International Tables) verwendet. Die Berücksichtigung der Wasserstoffatome erfolgte in der Weise, daß ideale CH- bzw. CH₃-Reste als starre Gruppen rotieren konnten. Der *R*-Wert betrug bei Einheitsgewichtung nach Verfeinerung von 347 Parametern 0.065.

Röntgenstrukturanalyse von 3b*)

Geeignete Kristalle von **3b** wurden durch langsames Auskristallisieren aus einer schwach übersättigten Lösung von **3b** in Toluol gewonnen. **3b** kristallisiert monoklin in der Raumgruppe $P_{1/c}$ mit den Gitterkonstanten a = 1188.3(3) pm, b = 1692.4(5) pm, c = 1488.8(5) pm, $\beta = 92.99(3)^\circ$. Das Zellvolumen beträgt 2990.2(17) $\cdot 10^6$ pm³, und die Zahl der Formeleinheiten in der Elementarzelle Z = 4. Daraus berechnet sich eine Dichte von 1.18 g/cm³. Auf einem automatischen Vierkreisdiffraktometer (Nicolet R3m) wurden im Bereich $3^\circ < 2\Theta < 55^\circ$ 3908 unabhängige Reflexe vermessen (Mo- K_{α} -Strahlung, Graphitmonochromator). Nach Lorentz- und Polarisationskorrektur wurden 2316 Strukturfaktoren mit $F_o > 4\sigma$ (F_o) zur Lösung der Struktur verwendet. Die Lagen der Nichtwasserstoffatome wurden mit direkten Methoden (SHELXTL) bestimmt und nach der Methode der kleinsten Fehlerquadrate verfeinert. Die Wasserstoffatome an den Aromaten wurden nach idealer Geometrie berechnet und bei der Verfeinerung der Nichtwasserstoffatome konstant gehalten. Die Wasserstoffatome der Methylgruppen wurden für ideale Tetraeder berechnet, und die Stellung der Tetraeder wurde mitverfeinert. Der *R*-Wert konvergiert bei Verfeinerung von 325 Parametern gegen 0.067 ($R_w = 0.045$, $w = 1/\sigma^2$). Es wurden Streufaktoren für ungeladene Atome (International Tables) verwendet.

Abstände	{ pm }			Winkel	[°]		
P1C1	167.1(5)	C23C22	135.3(10)	C1P1C30	107.9(2)	C1 3C1 2C1 1	120.7(5)
P1C30	181.6(5)	C22C21	130.4(8)	Silp2C1	111.0(2)	C12C11C10	121.9(4)
P2Si1	226.4(2)	C21C20	139.3(7)	Si1P2C20	101.2(2)	N1C10C15	121.8(4)
P2C1	185.4(4)	C35C34	139.5(6)	C1P2C20	102.6(2)	N1C10C11	121.7(4)
P2C20	182.9(5)	C35C30	138.5(8)	P2SilC3	117.6(2)	C15C10C11	116.5(4)
Si1C3	184.1(7)	C34C33	133.3(8)	P2Si1C4	101.4(2)	C1 3C2F1	115.9(5)
Si1C4	186.0(5)	C33C32	135,9(B)	C3Si1C4	108.5(3)	C13C2F2	115.8(5)
Si1C5	184.4(6)	C32C31	139.0(6)	P2511C5	108.6(2)	F1C2F2	102.1(5)
Si2N1	179.2(4)	C31C30	137.4(8)	C3511C5	110.6(3)	C13C2F3	115.7(5)
Si2C6	184.4(6)			C45i1C5	109.5(3)	F1C2F3	101.7(5)
Si2C7	186.7(5)			N1Si2C6	111.0(2)	F2C2F3	103.7(5)
Si2C8	185.5(5)			N1Si2C7	109.4(2)	C24C25C20	122.2(5)
C1N1	144.5(6)			C6512C7	107.8(3)	C25C24C23	119.5(6)
N1C10	139.6(6)			N1512C8	108.6(2)	C24C23C22	120.0(6)
C15C14	138.0(7)			C6512C8	108.2(3)	C23C22C21	120.3(6)
C15C10	140.2(6)			C7512C8	111.8(2)	C22C21C20	121.1(6)
C14C13	137.6(7)			P1C1P2	119.0(3)	P2C20C25	124.7(3)
C13C12	137.8(6)			P1C1N1	129.7(3)	P2C20C21	118.5(4)
C13C2	144.1(8)			P2C1N1	111.2(3)	C25C20C21	116.9(4)
C12C11	138.1(7)			Si2N1C1	121.0(3)	C34C35C30	120.0(5)
C11C10	130.5(7)			S12N1C10	122.5(3)	C35C34C33	121.4(5)
C2P1	131.4(7)			C1N1C10	116.4(3)	C34C33C32	119.8(4)
C2F2	129.1(7)			C14C15C10	121.3(4)	C33C32C31	120.0(5
C2F3	126.9(7)			C1 5C1 4C1 3	121.0(4)	C32C31C30	121.3(5
C25C24	137.0(7)			C14C13C12	118.4(4)	P1C30C35	125.9(4
C25C20	138.2(7)			C1 4C1 3C2	121.8(4)	P1C30C31	116.5(4
C24C23	138,2(8)			C12C13C2	119.8(5)	C35C30C31	117.5(4

Tab. 4. Die wichtigsten Abstände und Winkel in 3b. Standardabweichungen in Klammern

*) Siehe Fußnote S. 1876.

Tab. 5. Atomkoordinaten und Temperaturfaktoren von 3b. Standardabweichungen in Klammern

Atom	x	Y	Z	U11	U22	U33	U23	U13	U12
P1	0,7358(1)	0.6570(1)	0.8105(1)	0.051(1)	0.041(1)	0.056(1)	-0.000(1)	0.009(1)	-0.000(1)
P2	0.8465(1)	0.4984(1)	0.7787(1)	0.052(1)	0.038(1)	0.055(1)	0.001(1)	-0.000(1)	0.003(1)
Si1	0.7573(2)	0.4651(1)	0.9040(1)	0.094(1)	0.053(1)	0.050(1)	0.007(1)	0.003(1)	-0.001(1)
Si2	0.8308(1)	0.6516(1)	0.5684(1)	0.061(1)	0.058(1)	0.042(1)	0.003(1)	-0.011(1)	0.004(1)
C1	0.8222(4)	0.6038(3)	0.7495(3)	0.039(3)	0.045(3)	0.037(3)	0.002(3)	-0.004(3)	-0.005(3)
N1	0.8917(3)	0.6283(2)	0.6778(2)	0.035(3)	0.040(3)	0.035(3)	-0.001(2)	-0.004(2)	0.003(2)
C15	1.0532(4)	0.6392(2)	0.7854(3)	0.045(4)	0.049(3)	0.042(3)	-0.005(3)	-0,002(3)	0.006(3)
C14	1.1679(4)	0.6445(3)	0.8035(3)	0.052(4)	0.052(3)	0.058(3)	-0.001(3)	-0.015(3)	-0.002(3)
C13	1.2417(4)	0.6402(2)	0.7355(3)	0.037(3)	0.038(3)	0.084(4)	0.004(3)	0.002(3)	0.001(3)
C12	1.1987(4)	0.6275(3)	0.6490(3)	0.041(4)	0.068(4)	0.068(4)	0.005(3)	0.015(3)	-0.001(3)
C11	1.0839(4)	0,6216(3)	0.6307(3)	0.057(4)	0.061(4)	0.051(4)	0.002(3)	-0.003(3)	0.005(3)
C10	1.0077(4)	0.6290(2)	0.6974(3)	0.046(3)	0.028(3)	0.044(3)	0.001(3)	0.006(3)	0.005(3)
C2	1,3616(5)	0.6480(3)	0.7527(4)	0.050(4)	0.084(4)	0.175(6)	0.016(5)	-0.021(4)	-0.002(4)
F1	1.3970(3)	0.6485(3)	0.8377(3)	0.052(3)	0.357(6)	0.158(4)	-0.000(4)	-0.035(3)	0.001(4)
F2	1.4223(3)	0.5929(2)	0.7200(3)	0.054(3)	0.172(4)	0.324(6)	-0.093(4)	-0.010(4)	0.031(3)
F3	1.4049(4)	0.7111(2)	0.7241(4)	0.078(3)	0.148(4)	0.378(7)	0.083(4)	-0.040(4)	-0.057(3)
C25	0.6521(4)	0.4685(3)	0.6634(3)	0.058(4)	0.067(4)	0.060(4)	-0,009(3)	-0.005(3)	-0.013(3)
C24	0.5907(6)	0,4270(3)	0.5989(4)	0.077(5)	0.108(6)	0.067(5)	-0.008(4)	0.005(4)	-0.024(5)
C23	0.6369(6)	0.3605(4)	0.5613(4)	0.143(7)	0.098(5)	0.057(4)	-0.007(4)	-0.008(4)	-0.056(5)
C22	0.7426(7)	0.3377(4)	0.5873(4)	0.162(8)	0.056(4)	0.073(5)	-0.010(4)	0.000(5)	-0.015(6)
C21	0.8050(5)	0.3805(3)	0.6515(3)	0.101(6)	0.055(4)	0.061(4)	-0.007(3)	-0.001(4)	0.001(4)
C20	0.7603(4)	0.4469(3)	0.6918(3)	0.060(4)	0.037(3)	0.046(3)	-0.002(3)	0.010(3)	-0.004(3)
C35	0.8511(5)	0.7967(3)	0.7588(3)	0.053(4)	0.046(3)	0.059(4)	-0.006(3)	0.003(3)	0.007(3)
C34	0.8518(5)	0.8771(2)	0.7383(3)	0.081(5)	0.045(4)	0.063(4)	-0.003(3)	0.019(4)	-0.009(3)
C33	0.7584(5)	0.9205(3)	0.7393(3)	0.096(5)	0.040(3)	0.074(3)	0.003(3)	-0.005(4)	0.013(4)
Ç32	0.6600(5)	O.8864(3)	0.7610(3)	0.073(5)	0.057(4)	0.112(5)	0.002(3)	0.001(4)	0.029(3)
C31	0.6571(5)	0.8066(3)	0.7825(3)	0.055(4)	0.049(4)	0.084(4)	-0.002(3)	0.008(4)	-0.001(3)
C30	0.7516(5)	0.7602(3)	0.7798(3)	0.041(4)	0.045(3)	0.043(4)	-0.007(3)	0.001(3)	0.005(3)
C3	0.6032(5)	0.4757(4)	0.9013(4)	0.111(6)	0.132(6)	0,106(5)	0.032(5)	0.037(5)	-0.002(6)
C4	0.7926(6)	0.3583(3)	0.9143(4)	O.179(8)	0.058(4)	0.088(5)	0.027(4)	0.016(5)	0.003(5)
C5	0.8233(7)	0.5193(3)	1.0003(4)	0.191(9)	0.100(5)	0.065(5)	0.003(4)	-0.018(5)	-0.012(6)
C6	0.6798(5)	0.6747(3)	0.5733(3)	0.080(5)	0.110(5)	0.060(4)	0.007(4)	-0.027(4)	0.011(4)
C7	0.8441(6)	0.5644(3)	0.4927(3)	0.105(5)	0.075(4)	0.050(4)	-0.007(3)	-0.012(4)	-0.004(4)
C8	0.9031(5)	0.7398(3)	0.5252(3)	0.112(6)	0.071(4)	0.051(4)	0.015(3)	-0,016(4)	0.005(4)

¹⁾ 17. Mitteil.: R. Appel, V. Barth und F. Knoch, Chem. Ber. 116, 938 (1983).

- ²⁾ R. Appel, V. Barth, F. Knoll und I. Ruppert, Angew. Chem. 91, 936 (1979); Angew. Chem., Int. Ed. Engl. 18, 873 (1979).
- ³⁾ R. Appel und B. Laubach, Tetrahedron Lett. 21, 2497 (1980).
- 4) I. Issleib, H. Schmidt und C. Wirkner, Z. Anorg. Allg. Chem. 473, 85 (1981).
- 5) C. Thomson, J. Chem. Soc., Chem. Commun. 1977, 322.
- ⁶⁾ B. Laubach, Dipl.-Arbeit, Univ. Bonn 1980.
- ⁷⁾ R. Appel, F. Knoll und I. Ruppert, Angew. Chem. **93**, 771 (1981).; Angew. Chem., Int. Ed. Engl. **20**, 731 (1981).
- ⁸⁾ R. Appel, H. Förster, B. Laubach, F. Knoll und I. Ruppert, Angew. Chem. 94, 460 (1982); Angew. Chem., Int. Ed. Engl. 21, 448 (1982).
- ⁹⁾ R. Appel, V. Barth, H. Kunze, B. Laubach, W. Paulen und F. Knoll, in Phosphorus Chemistry, Proceedings of the 1981 International Conference (L. D. Quinn und J. G. Verkade), Am. Chem. Soc., Symposium Series 171, S. 395, American Chemical Society, Washington D. C. 1981.
- ¹⁰⁾ R. Appel und K. Geisler, J. Organomet. Chem. 112, 61 (1976).
- ¹¹⁾ E. Kühle, Angew. Chem. 79, 663 (1967); Angew. Chem., Int. Ed. Engl. 6, 649 (1967).

[282/82]

Chem. Ber. 116 (1983)